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Jacob Lewis Bourjaily

The Decay of Vector into Two Scalars
We are to compute the decay rate of unpolarized vector particles of mass M into two scalars of mass

m. We should calculate the decay rate in the rest frame.
Defining p̃µ = (p̄− p)µ, the amplitude for the decay diagram is given by

�kµ

p̄µ

pµ

= iM = εµif p̃µ.

It is quite straightforward to calculate the spin-averaged square of the amplitude,
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1
3

∑

spin
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f2

3

(
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)
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=
f2

3
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)
.

Now, because we are computing this in the rest frame where kµ = (M, 0) and p̃µ = (0,−2|~p|), kµp̃µ = 0.
Similarly, we know that p̃2 = 4|~p|2. Therefore,

|M|2 =
4f2|~p|2

3
.

Note that |~p| = E2 − m2 =
(

M2

4 −m2
)1/2

. Using this and the equation for the decay rate found in
Peskin and Schroeder,
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6πM2
.

Mott’s Formula
We are to generalize problem 2 of Homework 8 in the relativistic case. We computed then the general

amplitude to be

M =
−ie2Z

(pf − p)2
ūs′(pf )γ0us(p).

To compute the spin averaged amplitude, it will be helpful to recall our earlier kinematic result that
(pf − p)4 = 16|~p|4 sin4 θ/2. Let us now compute the amplitude squared in the spin-averaged case.

|M|2 =
1
2

Z2e4

(pf − p)4
∑

spin

ūs(p)γ0us′(pf )ūs′(pf )γ0us(p),

=
Z2e4

32|~p|4 sin4 θ/2
Tr

(
γ0(6pf + m)γ0(6p + m)

)
.

It will be helpful to break up the trace into its four additive pieces.

Tr
(
γ0(6pf + m)γ0(6p + m)

)
= Tr

(
γ06pfγ06p)

+ Tr
(
γ0mγ06p)

+ Tr
(
γ06pfγ0m

)
+ Tr

(
γ0mγ0m

)
.
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It should be clear that the two middle terms are both zero because there is an odd number of γ’s. The
last term is nearly trivial, Tr

(
γ0mγ0m

)
= 4m2. Let us now work on the first term.

Tr
(
γ06pfγ06p)

= pfµ
pνTr

(
γ0γµγ0γν

)
,

= 4pfµpν

(
g0µg0ν − g00gµν + g0νgµ0

)
,

= 4
(
2E2 − pfµpµ

)
,

= 4
(
2E2 − E2 + ~pf~p

)
,

= 4
(
E2 + |~p|2 cos θ

)
.

Using these results, we have that

|M|2 =
Z2e4

8|~p|4 sin4 θ/2

[
E2 + |~p|2 cos θ + m2

]
,

=
Z2e4

8|~p|4 sin4 θ/2

[
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]
,

=
Z2e4

8|~p|4 sin4 θ/2

[
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]
,

=
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[
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E

)2
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]
,

=
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4β2|~p|2 sin4 θ/2

[
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]
.

In the last two lines we have used the fact that ~p/E = β. Now, we showed in Homework 8 that

dσ

dΩ
=
|M|2
16π2

.

Using the fine structure constant to simplify notation, where α2 = e4

16π2 , it is clear that

∴ dσ

dΩ
=

Z2α2

4β2|~p|2 sin4 θ/2

[
1− β2 sin2 θ/2

]
.

Helicity Amplitudes in Yukawa Theory
We are to consider the amplitude given by,

iM =�p k

p′ k′
+�p k

k′p′p′

= (−ig2)
(
ū(p′)u(p) 1

(p′−p)2−m2
φ
ū(k′)u(k)− ū(p′)u(k) 1

(p′−k)2−m2
φ
ū(k′)u(p)

)
.

a) We are to derive the selection rules for helicity for this theory.
We can best understand the selection rules by requiring that one of the spinors is in a projec-

tion. To bring the projection operator to the neighboring spinor (in either diagram and starting
from any outside term) requires that the projection anticommutes through a γ0. Therefore, the
interaction must flip the spins. Exempli Gratia, ū 1+γ5

2 uR = u†γ0 1+γ5

2 uR = ūLuR.

b) Given these selection rules, what are the non-vanishing amplitudes? These are the only possi-
ble terms that involve both incoming states flipping their spin in the outgoing states. So, the
nonzero amplitudes are MLL;RR,MRR;LL,MLR;RL,MRL;LR,MRL;RL,MLR;LR.

c) We are to use problem 5 of Homework 5 to compute the explicit form of the two-spinors. We
should use this to find the eigenvectors uλ(p) at very high energies. This is a relatively straight
forward calculation. We derived quite some time ago that in the high energy limit for general
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spinors. Using the helicity basis derived in Homework 5, we see that

uR =
√

2E




0
0

−e−iφ sin θ/2
cos θ/2


 and uL =

√
2E




cos θ/2
eiφ sin θ/2

0
0


 .

d) Now we should rederive the selection rules from part (a). This is relatively straight forward. Let
us compute directly the ūR and ūL These two are simply,

ūR =
(
−
√

2Eeiφ sin θ/2,
√

2E cos θ/2, 0, 0
)

and ūL =
(
0, 0,

√
2E cos θ/2,

√
2Ee−iφ sin θ/2

)
.

It should be clear that in this limit, ūRuR = 0 because the have opposite zeros. Therefore, we
may again conclude that the only inner products that do not vanish are those which flip the spin
at the vertex. This is the same relationship seen intuitively in part (a).

e) We must now compute the nonvanishing inner produces of the eigenvectors that we mentioned
above. Let us compute each in turn directly.

ūR(p′)uL(p) = −2Eeiφ sin θ/2;

ūL(p′)uR(p) = 2Ee−iφ sin θ/2;

ūR(k′)uL(p) = −2Eeiφ cos θ/2;

ūL(k′)uR(p) = 2Ee−iφ cos θ/2;

ūR(p′)uL(k) = 2Eeiφ cos θ/2;

ūL(p′)uR(k) = −2Ee−iφ cos θ/2;

ūR(k′)uL(k) = 2Eeiφ sin θ/2;

ūL(k′)uR(k) = −2Ee−iφ sin θ/2.

f) Let us compute the amplitudes MRR;LL and MLR;LR in the limit of very high energy. We use
the limit to reduce |~p|2-like terms to E2. These are directly computed to be

MRR;LL = −g2

(
(−2Eeiφ sin θ/2)

1
4E2 sin2 θ/2

2Eeiφ sin θ/2− 2Eeiφ cos θ/2
1

−4E2 cos2 θ/2
(−2Eeiφ cos θ/2)

)
,

= g2(eiφ + eiφ),

∴ MRR;LL = 2g2eiφ.

By a similar calculation,

MLR;LR = −g2

(
2Ee−iφ cos θ/2

1
−4E2 cos2 θ/2

(−2Eeiφ cos θ/2)
)

,

∴ MLR;LR = −g2.

g) Let us determine the spin averaged amplitude squared. The contributions are very similar to
the two above (in fact, the amplitudes are identical so we just multiply). We see

|M|2 =
1
4

(
2(2g2)2 + 4g4

)
,

∴ |M|2 = 3g4.


